

# Critical energy infrastructure: the big picture on resiliency research.

National Academies of Science, Engineering, and Medicine. Committee on long-term coastal zone dynamics: interactions and feedbacks between natural and human processes along the U.S. Gulf Coast, September 18, 2017.

David E. Dismukes, Ph.D. Center for Energy Studies Louisiana State University

### Infrastructure overview

### Overview

Energy infrastructure supporting E&P activities.

Louisiana has a plethora of critical energy infrastructure. A large portion of which originated to support offshore exploration and production activities.



Louisiana's critical energy infrastructure.

A large portion of this infrastructure, in fact, is located in the coastal zone, not only in Louisiana, but various places along the Texas Gulf coast as well.



### Infrastructure

### Prior CES research and analysis.



Prior CES related energy infrastructure and support services research focuses on:

- (1) Describing and identifying relevant infrastructure and services in respective coastal areas (including development of GIS databases to support this description).
- (2) Explaining onshore-offshore industry/infrastructure nexus.
- (3) Examining and explaining infrastructure organization and structure (from industrial and labor market perspective).
- (4) Examine recent changes and the outlook for infrastructure and support activity development.

### Infrastructure vulnerability

### Vulnerability

### Hurricane Harvey, flooded energy infrastructure



### Vulnerability

### Hurricane Harvey, impacted infrastructure



### Vulnerability

### Hurricane Harvey, shut-in refinery capacity

|   | Company                                                             | Site           | Operable<br>Capacity<br>(bbl/day) | Percent of<br>Total GOM<br>Capacity<br>(%) | Percent of<br>Total U.S.<br>Capacity<br>(%) |
|---|---------------------------------------------------------------------|----------------|-----------------------------------|--------------------------------------------|---------------------------------------------|
|   | ExxonMobil                                                          | Baytown        | 560,500                           | 6.5%                                       | 3.0%                                        |
| - | ExxonMobil                                                          | Beaumont       | 362,300                           | 4.2%                                       | 1.9%                                        |
|   | Flint Hills                                                         | Corpus Christi | 296,470                           | 3.4%                                       | 1.6%                                        |
|   | Valero                                                              | Corpus Christi | 293,000                           | 3.4%                                       | 1.6%                                        |
|   | Citgo                                                               | Corpus Christi | 157,500                           | 1.8%                                       | 0.8%                                        |
|   | Buckeye Partners                                                    | Corpus Christi | 46,250                            | 0.5%                                       | 0.2%                                        |
|   | Magellan                                                            | Corpus Christi | 42,500                            | 0.5%                                       | 0.2%                                        |
|   | Shell                                                               | Deer Park      | 325,700                           | 3.8%                                       | 1.7%                                        |
|   | Marathon                                                            | Galveston Bay  | 459,000                           | 5.3%                                       | 2.5%                                        |
|   | Lyondell                                                            | Houston        | 263,776                           | 3.1%                                       | 1.4%                                        |
|   | Valero                                                              | Houston        | 191,000                           | 2.2%                                       | 1.0%                                        |
|   | Petromax                                                            | Houston        | 25,000                            | 0.3%                                       | 0.1%                                        |
|   | Petrobras                                                           | Pasadena       | 112,229                           | 1.3%                                       | 0.6%                                        |
|   | Motiva                                                              | Port Arthur    | 603,000                           | 7.0%                                       | 3.2%                                        |
|   | Valero                                                              | Port Arthur    | 335,000                           | 3.9%                                       | 1.8%                                        |
|   | Total                                                               | Port Arthur    | 225,500                           | 2.6%                                       | 1.2%                                        |
|   | Phillips 66                                                         | Sweeny         | 247,000                           | 2.9%                                       | 1.3%                                        |
|   | Valero                                                              | Texas City     | 225,000                           | 2.6%                                       | 1.2%                                        |
|   | Marathon                                                            | Texas City     | 86,000                            | 1.0%                                       | 0.5%                                        |
|   | Valero                                                              | Three Rivers   | 89,000                            | 1.0%                                       | 0.5%                                        |
|   | Total Shut-In Capacity<br>Total GOM Capacity<br>Total U.S. Capacity |                | 4,945,725                         | 57.3%                                      | 26.6%                                       |
|   |                                                                     |                | 8,637,186<br>18,617,027           | 100.0%                                     | 46.4%<br>100.0%                             |

### Vulnerability

#### Change in U.S. regular gasoline prices

U.S. retail gasoline prices the week after Hurricane Harvey were an average of \$0.28 per gallon higher than prices the week before. Supply disruptions and refinery outages caused will continue to affect gasoline supply and prices, particularly along the East Coast and Gulf Coast.



### **Research questions**

#### **Committee-identified research questions**

1. What are the coastal parameters/processes (e.g. storm surge, waves and currents, sediment transport etc.) that influence major/critical components of facility design, construction and operation for your organization and the industry?

2. What gaps do you perceive in these parameters/processes including technological maturity, physical understanding, data availability, data accuracy, conflicts, models' predictive abilities?

3. What time horizons (e.g. years, decades, century) are of interest to your organization and the industry with regard to each of these parameters/processes and where do you see gaps and uncertainties in how they may change over those time horizons?

4. How often do you typically utilize cutting-edge academic/research data/models from the coastal engineering/science community as opposed to benchmarked commercially available data and software, and what are the reasons behind these choices?

5. Who does your organization/industry consider a stakeholder when dealing with coastal issues?

6. What hurdles does your organization or the industry face when communicating with stakeholders (internal and external) about the science behind coastal processes/impacts and interactions with your facility and operations that are of mutual interest and concern?

7. What coastal parameters/processes do you address with regard to assessing any impacts from your facilities to the environment (natural, social) during construction and operations, and what are the perceived gaps in assessing these faithfully?

8. Are there are particular areas of research within coastal engineering and science that you would recommend be addressed that could fill in any gaps perceived by your organization and the industry?

9. How can this NASEM committee and its ultimate technical recommendations support the goals and objectives of your organization and the industry in sustaining the development of energy infrastructure along the Gulf coast?

10. How is facility planning, design, construction and operation in the coastal zone of the Gulf of Mexico similar/different from other environments your organizations works in, especially with regard to coastal issues? Are there lessons from other systems that could provide insights for the GOM and visa-versa?

11. How do you see the energy industry and associated infrastructure along the Gulf coast evolving in the next decades and century?

#### **Question 1: Coastal design parameters.**

1. What are the coastal parameters/processes (e.g. storm surge, waves and currents, sediment transport etc.) that influence major/critical components of facility design, construction and operation for your organization and the industry?

### **RESPONSE:**

Energy infrastructure investments are changing, particularly in the coastal zone, to address increasing environmental stresses. This includes raising elevations of various new facilities to levels that can withstand storm surge and flooding events, as well as hardening assets, like power lines and natural gas transportation lines, for exposure.

### **Research questions**

**Example – Cameron LNG site preparation.** 







James Construction Group presentation, May 2017.



### **Research questions**

### Example – Gulf LNG site preparation.









**Research questions** 

Example -- SASOL (ethane cracker) site preparation.



### **Research questions**

Example – pipeline exposure – former Tennessee pipeline system.



**Research questions** 

Example – pipeline exposure – former Tennessee pipeline system: layout schematic.



**Research questions** 

Example – pipeline exposure – former Tennessee pipeline system: matting schematic.



**Research questions** 

Example – pipeline exposure – former Tennessee pipeline system: photo.



### **Research questions**

Other pipeline matting configurations.



#### Question 2: Design parameter gaps.

2. What gaps do you perceive in these parameters/processes including technological maturity, physical understanding, data availability, data accuracy, conflicts, models' predictive abilities?

### **RESPONSE:**

Current gaps include (but are not limited to) understanding, on a consistent basis, how existing infrastructure, and new infrastructure, are being modified to adapt to new environmental conditions and quantifying the impact these new reliability/resiliency measures are having on infrastructure development (as well as understanding their effectiveness).

#### **Question 3: Time horizons.**

3. What time horizons (e.g. years, decades, century) are of interest to your organization and the industry with regard to each of these parameters/processes and where do you see gaps and uncertainties in how they may change over those time horizons?

### **RESPONSE:**

Short term decisions and longer-term impacts are important given the long-lived nature of these types of assets.

Question 4: Academic vs. industry data and methods.

4. How often do you typically utilize cutting-edge academic/research data/models from the coastal engineering/science community as opposed to benchmarked commercially available data and software, and what are the reasons behind these choices?

### **RESPONSE:**

- Academic modeling can be used in certain cases, particularly with simulation modeling, but most of this is contingent on the scope of the available information. It is difficult to model energy infrastructure development when there are often a limited number of "data points."
- Commercially-available data is often relied upon.

#### **Question 5: Stakeholder definitions.**

5. Who does your organization/industry consider a stakeholder when dealing with coastal issues?

### **RESPONSE:**

Any party with a vested interest that usually is organized into a bona fide group. CES tends to have a relatively heavier focus on industry-related relationships as well as relationships with regulators.

#### **Question 6: Stakeholder communications.**

6. What hurdles does your organization or the industry face when communicating with stakeholders (internal and external) about the science behind coastal processes/impacts and interactions with your facility and operations that are of mutual interest and concern?

### **RESPONSE:**

Energy infrastructure development, even along the central Gulf Coast, is becoming more adversarial – more national advocacy groups are participating in the permitting process, particularly on pipelines.

#### **Question 7: Perceived gaps in coastal parameters/processes**

7. What coastal parameters/processes do you address with regard to assessing any impacts from your facilities to the environment (natural, social) during construction and operations, and what are the perceived gaps in assessing these faithfully?

### **RESPONSE:**

CES' research focusses more heavily on the economic and regulatory issues associated with infrastructure development and how that development changes, particularly with regard to offshore activities.

#### **Question 8: Research priorities**

8. Are there are particular areas of research within coastal engineering and science that you would recommend be addressed that could fill in any gaps perceived by your organization and the industry?

### **RESPONSE:**

- Continued changing nature of infrastructure to meet resiliency challenges.
- The role of infrastructure in perhaps supporting (or undermining) local resiliency – understanding the relationship of the infrastructure and its impact on the human/social environment.

#### **Question 9: NASEM support actions.**

9. How can this NASEM committee and its ultimate technical recommendations support the goals and objectives of your organization and the industry in sustaining the development of energy infrastructure along the Gulf coast?

### **RESPONSE:**

- Continued research interest and funding in these important issues.
- Facilitating dialogues, particularly with industry, on understanding these issues.

#### **Question 10: Similarity of GOM to other coastal areas.**

10. How is facility planning, design, construction and operation in the coastal zone of the Gulf of Mexico similar/different from other environments your organizations works in, especially with regard to coastal issues? Are there lessons from other systems that could provide insights for the GOM and visa-versa?

### **RESPONSE:**

The Gulf Coast is one of the most unique working coasts in the world. Not clear that there are considerable lessons learned that could be brought to the GOM – perhaps many that could be extended to other emerging frontier areas.

**Question 11: GOM industry evolution.** 

11. How do you see the energy industry and associated infrastructure along the Gulf coast evolving in the next decades and century?

### **RESPONSE:**

- GOM critical energy infrastructure is getting a "second wind" due to unconventional oil and gas activity.
- Infrastructure is being modified to meet new markets/requirements (i.e., growing U.S. energy export market).

**Research Questions** 

Gulf of Mexico region – state-specific total capital expenditures

The continued low natural gas price outlook has facilitated considerable development of over \$318 billion: \$100 billion already completed, \$218 billion remaining.



**Research Questions** 

**U.S.** petroleum product imports and exports

In 2011, the U.S. became a net exporter of petroleum products. Net exports have increased 360 percent since then.



### **Research Questions**

#### Natural gas pipeline reversal

ANR Pipeline's Southeast line was constructed to transport gas from south Louisiana, north to Michigan. The Lebanon Lateral was built as a joint venture between ANR and Texas Eastern to bring additional supplies into northeast markets by delivering gas into Texas Eastern and Dominion systems. Today, those supplies are not longer needed as Appalachian production is displacing those long haul supplies. Flows have been reversed on the Lebanon Lateral, as well as the Southeast line, moving gas north and south.





**Research Questions** 

**Examples of other selective industry changes** 

| Infrastructure<br>Category             | GOM<br>Outlook | Influencing<br>Factors                                                                       |
|----------------------------------------|----------------|----------------------------------------------------------------------------------------------|
| Petrochemicals                         |                | low natural gas prices; diverse sources; low volatility.                                     |
| Refineries                             |                | low crude oil prices, diverse crude quality, diverse sources.                                |
| Power Generation                       |                | flat intrinsic growth because of efficiency measures; new end uses.                          |
| Pipelines                              |                | diverse resource mix; northeast constraints; re-<br>purposing, re-orientation opportunities. |
| Storage                                |                | No supply volatility; ample storage of intrinsic growth.                                     |
| Gas Processing                         |                | Growing liquids market                                                                       |
| Shipyards, bases, and marine terminals |                | Decreasing offshore activity.                                                                |
| LNG                                    |                | Increasing export oppportunites; abundant, diverse supplies.                                 |

© LSU Center for Energy Studies 35

**Questions, Comments and Discussion** 



dismukes@lsu.edu

www.enrg.lsu.edu