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We simulate multiple panels of firm characteristics and stock

returns from the Berk et al. (1999) equilibrium model. The char-

acteristics identified in the model are the four Fama and French

(2015) characteristics plus momentum. We evaluate the perfor-

mance of the Fama-French-Carhart model, the Fama-MacBeth-

Rosenberg model, the instrumented principal components method

proposed by Kelly et al. (2019), and the random Fourier features

method proposed by Didisheim et al. (2024). We find that the

last two models outperform the first two. Performance in the

Didisheim et al. (2024) model is increasing in the number of fac-

tors up to at least several hundred. The Kelly et al. (2019) model

performs the best.
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The goal of this project is to perform Monte Carlo analysis of factor con-

struction methodologies. We examine classical methodologies (Fama and

French, 2015; Fama and MacBeth, 1973; Rosenberg, 1974) and two recent

proposals: instrumented principal components (Kelly et al., 2019, here-

after KPS) and random Fourier features (Didisheim et al., 2024, hereafter

DKKM). We compare methods based on Hansen-Jagannathan distances

and Sharpe ratios. We assess statistical significance by generating a sam-

ple of independent panels. We are able to avoid some of the sampling

error inherent in empirical evaluations because we can compute the true

theoretical stochastic discount factor and moments of returns. We evalu-

ate the conditional performance of the factor construction metholodogies

by computing the true discount factor at each date in each panel.

A prime difficulty in assessing factor models via Monte Carlo is that

one must choose a data generating process, and the choice of a process

may dictate the outcome. To avoid biasing the outcome through selection

of the data generating process, we use an off-the-shelf equilibrium model.

Berk, Green, and Naik (1999), hereafter BGN, develop a rational pricing

model in which firm characteristics such as size and book-to-market have

explanatory power for returns. We simulate their model. In the model,

it is possible to calculate the four characteristics used in the five-factor

Fama and French (2015) model and also momentum. We evaluate factor

construction methods based on those five characteristics.

DKKM consider a very large number of factors, prompting the term

“complexity” in their title. However, as the authors make clear, and as is

well understood, the ultimate goal is to derive a single factor model, the

single factor being an estimate of the stochastic discount factor (SDF).

The essence of the DKKM methodology is to generate many new charac-

teristics as sines or cosines of random linear combinations of the original

characteristics. By de-meaning each generated characteristic in each cross-

section, the characteristics can be interpreted as portfolios. DKKM apply

penalized regression on the returns of the generated factor portfolios to
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form a single factor of the form β̂′
tft+1, where ft+1 denotes the (perhaps

very large) vector of generated factor returns from t to t + 1, and β̂t is

a vector of regression coefficients at t. The regression is a ridge regres-

sion of the constant 1 on the factor returns (Hansen and Richard, 1987;

Britten-Jones, 1999). This process should in principle allow the data more

freedom to speak regarding what the SDF is than if we start with a small

number of factors as is commonly done. One question we address in this

paper is whether this principle has any effect in the relatively simple BGN

economy (we find that it does).

KPS construct factors from characteristics and then reduce the number

of factors by using a version of principal components analysis (PCA). Their

version takes advantage of cross-sectional correlations between unobserv-

able covariances and observable characteristics, and they call it instru-

mented principal components analysis (IPCA). We use the five character-

istics in the BGN economy, apply IPCA to reduce the number of factors,

and then run a regression (without penalization) of the constant 1 on the

reduced set of factor returns.

Our findings are that the DKKM methodology outperforms the classical

models in the BGN economy. Furthermore, performance is increasing in

the number of factors up to several hundred factors, at which point it

plateaus. Remarkably, despite the fact that the DKKM method is based

on a large number of randomly constructed factors, the standard deviations

across simulated panels of sample Sharpe ratios and Hansen-Jagannathan

distances of the DKKM model are less than those of the classical models.

In more complex economies, and especially when more characteristics are

available to study, it seems likely that, as DKKM argue, it is beneficial

to generate thousands or even hundreds of thousands of factors before

attempting to consolidate them into an estimate of the SDF.

However, we also find that the KPS method with a small number of fac-

tors performs even better than the DKKM method. Our implementation

of the KPS method (IPCA + OLS) is related to running principal compo-
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nents regression (PCR = PCA + OLS), and PCR is related to the ridge

regression used by DKKM. The chief differences between IPCA + OLS on

the one hand and ridge regression on the other are

(i) the difference beween running IPCA and running PCA on characteris-

tic portfolios: IPCA exploits observed variation in firm characteristics

in its construction of factors (see KPS for discussion), and

(ii) the difference between PCR and ridge: PCR applies a zero-one “shrink-

age” of singular vectors, discarding small singular values and keeping

large singular values without shrinkage, whereas ridge applies smooth

shrinkage.

Based on the good performance of the KPS method that we document, we

surmise that (i) is very important. Consequently, a hybrid of the DKKM

and KPS methods that generates a large number of random factor port-

folios following the DKKM recipe and then applies IPCA + OLS as a

substitute for ridge regression might perform well, though we note that

IPCA + OLS is more numerically intensive than ridge regression.1

We describe the BGN model in the next section. Section 2 describes how

we assess factor models. Section 3 describes the DKKM, KPS, and classical

factor models that we study. Section 4 presents our results regarding those

models. Section 5 concludes.

1 Berk-Green-Naik Model

In the BGN model, firms invest optimally given an exogenous pricing ker-

nel and random investment opportunities. The SDF at date t for pricing

cash flows at t+ 1 is

mt+1 := e−rt− 1
2σ

2
m+σmεt+1 . (1.1)

1DKKM show that applying PCA + ridge to random characteristic portfolios does not work as well as
ridge, but applying IPCA + OLS (or IPCA + ridge) may work better.
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The interest rate process is a Vasicek (1979) process:

rt+1 = rt + κ(µ− rt) + σrηt+1 . (1.2)

Here, ε and η are independent sequences of i.i.d. standard normals.

There are a fixed number of firms. Each firm begins at date 0 with zero

capital. Each firm receives an investment opportunity each period. The

opportunities expire if not taken in the period in which they arrive. All

projects require the same amount of capital I and are fully equity financed.

A project that is taken generates operating cash flows each period until it

randomly dies. Free cash flow is paid out to shareholders.

The operating cash flow of each project has a time-invariant beta with

respect to the SDF process shocks ε and a time-invariant idiosyncratic

risk. The betas and idiosyncratic risks are drawn randomly for each firm

and date from fixed distributions. A project’s NPV depends on its beta

and on the level of interest rates. Firms accept all positive NPV projects.

Because the project arrival processes are the same across firms, all firms

have the same value of growth options at any point in time. The value of

growth options varies over time, because of variation in the interest rate.

The value of assets in place varies across firms at each point in time due

to differences in past project quality. The value of assets in place also

depends on the interest rate.

The model generates the following data for each firm each period:

• book value of equity = book value of assets

• market value of equity

• net income = operating cash flow

• stock return

From these, we calculate size, book-to-market, ROE, asset growth, and

momentum (t− 12 through t− 2 returns). BGN show that size, book-to-

market, and momentum are correlated with subsequent returns.
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We calibrate the model following BGN, and simulate it with a period

length of one month, as do BGN. Like BGN, we discard the first 200

months to allow the economy to reach a steady state. We simulate multiple

panels. Each panel consists of 1,000 firms and 720 months (after discarding

the first 200). The following figures show data for a single panel. The exact

data shown in these figures is not important. The figures only illustrate

general features of the model.

Figure 1.1 shows a path of the interest rate process. Figures 1.2–1.5

provide information regarding the cross-section of firms at four distinct

dates. Figure 1.2 shows the number of active projects across firms. The

book equity of a firm equals its number of active projects multiplied by

the cost of each project, so Figure 1.2 also provides information about the

dispersion of book equity across firms. Figure 1.3 shows the distribution of

market equity across firms. Aggregate market equity is relatively high at

month 400 and relatively low at month 900 due to differences in the level

and history of the interest rate. The level affects both the value of assets

in place and the value of growth options, and the history affects the value

of assets in place due to the effect of the interest rate on project choice.

Figure 1.4 shows the distribution across firms of four firm characteristics:

book-to-market, momentum, profitability, and asset growth. Figure 1.5

shows the distribution of returns. As in the actual data, the cross-sectional

distribution of returns is leptokurtic and positively skewed.

To compute theoretical conditional moments in the BGN model, we need

the list of all current projects for every firm – the number of projects

and each project’s beta and idiosyncratic risk, and we need to know the

current interest rate. Past project decisions depend on past interest rates

as well as project betas, so the economy is path dependent. To put it

another way, the state space of the economy is very large. Nevertheless,

we can compute the theoretical conditional moments. We compute the

true conditional SDF each period and the true conditional Sharpe ratios

of factor portfolios.
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Figure 1.1: A path of the Vasicek interest rate process with the BGN calibration.
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2 Assessing Factor Models

We follow DKKM closely in our evaluation of models. Hansen and Richard

(1987) show that the efficient part of the mean-variance frontier is the set

of returns rf,t+ bzt+1 for b ≥ 0, where rf,t denotes the risk-free rate from t

to t+1, and zt+1 is the projection of the constant 1 on the space of excess

returns from t to t+1. The residual 1−zt+1 in the projection is orthogonal

to excess returns. The unique conditional SDF in the span of the asset

returns is
1− zt+1

(1 + rf,t)Et[(1− zt+1)2]
. (2.1)

In the factor models that we study, all factors are excess returns. There

is a similar representation of the mean-variance frontier spanned by each

set of factors and the risk-free asset. Given a set of factors, let yt+1 denote

the projection of the constant 1 on the set of factor portfolio returns from t

to t+1, so {rf,t+ byt+1 | b ≥ 0} is the efficient part of the frontier spanned

by the risk-free asset and the factor returns. The unique conditional SDF

in the span of the factors and the risk-free asset for pricing the factors and
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the risk-free asset is
1− yt+1

(1 + rf,t)Et[(1− yt+1)2]
. (2.2)

In each factor model and at each date t, we estimate yt+1 by regressing

the constant 1 on the factors (without an intercept and possibly with pe-

nalization) using the previous 360 months of returns. Britten-Jones (1999)

uses this type of regression (without penalization) to compute the mean-

variance frontier. DKKM use ridge regression to mitigate overfitting and

to allow even more factors than time periods in the regression. Denoting

the vector of regression coefficients by β̂t and the factor returns from t to

t+ 1 by ft+1, we compute ŷt+1 = β̂′
tft+1.

We calculate the square root of the mean of (ŷt+1 − zt+1)
2 in each panel

and consider it an estimate of the unconditional Hansen and Jagannathan

(1997) distance (we ignore the scaling in the SDFs (2.1) and (2.2)). The

Hansen-Jagannathan distance is a measure of how accurately the factor

model prices assets and also a measure of how close the factor model comes

to spanning the mean-variance frontier. As a second measure, we compute

the mean in each panel of the theoretical conditional Sharpe ratio of ŷt+1.

3 Models

We replicate the Fama and French (2015) construction of SMB, HML,

RMW, and CMA and include UMD as well as the value-weighted market

excess return to form the six-factor Fama-French-Carhart (FFC) model.

We also run Fama and MacBeth (1973) regressions on book-to-market,

momentum, profitability, and asset growth. We standardize the portfolios

implicit in the Fama-MacBeth regressions (Rosenberg, 1974; Fama, 1976)

to be 100% long and 100% short and use the portfolio returns in conjunc-

tion with the equally weighted market excess return to form what we call

the Fama-MacBeth-Rosenberg (FMR) model.2

2We use the equal weighted market excess return because the FMR regressions weight stocks equally.
The equally weighted market excess return is the intercept in the FMR regression when the char-
acteristics are de-meaned in each cross section. We could run weighted FMR regressions to achieve
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We use the same five characteristics to implement the DKKM method.

DKKM use random Fourier features to create potentially a very large

number of factors. We follow their recipe to form various sets of what

we call DKKM factors, ranging from a six factor model to a model with

36,000 factors.

The DKKM method begins by standardizing each characteristic in each

cross-section, replacing the raw characteristic values with percentiles and

then subtracting 0.5 to get ranks between −0.5 and +0.5. Let Ct denote

the 5× n matrix of rank-standardized characteristics at date t, where n is

the number of assets. From Ct, we generate an nf × n matrix of random

characteristics as follows. Let W denote a
nf

2 × 5 matrix whose entries

are sampled from the standard normal distribution, and let γ denote a

length
nf

2 vector whose entries are sampled uniformly from {0.5, 0.6, . . . , 1}.
We use the same W and γ for all t. Set At = γ ⊙ WCt, where γ ⊙ W

denotes element by element multiplication of γ with each column of W .

We compute an nf × n matrix of random characteristics from the
nf

2 × n

matrix At by taking sines and cosines of the elements of At and stacking

the sines and cosines as separate rows. We then rank standardize the rows

of this matrix, replacing the raw characteristic values with percentiles and

then subtracting 0.5 to get ranks between −0.5 and +0.5. Each row of

this matrix can be interpreted as a long-short portfolio. The returns of

the portfolios from t to t+ 1 are the DKKM factor realizations ft+1 from

t to t+ 1.

We use ridge regression to form the estimate β̂′
tft+1. We vary the penalty

parameter in the ridge regression to create multiple estimates. To mitigate

the effect of randomness in the draws of the random Fourier features, we

follow DKKM by generating 20 samples of W and γ, and, for each value

of α, we average the 20 estimates β̂′
tft+1 to produce our final estimate ŷt+1

for that value of α.

value weighting or something between equal and value weighting, but we do not explore that.
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The ridge regression is

min
β

0∑
i=−359

(1− β′ft+i)
2
+ αβ′β , (3.1)

where α is the penalty parameter. More penalization is needed when the

number of factors nf is larger. To get a sense for how the penalty should

vary with the number of factors, consider doubling the number of factors

by simply replicating each factor. Then, to make β′β small, we will want

to split each beta evenly among the duplicate factors in each pair. This

reduces the sum of squared betas by 1/2. Therefore, to maintain the same

penalization, we should double α. Hence, we set α = κnf and vary κ. If

adding more factors is more effective than simply replicating factors, then,

for each value of κ, we should see performance improve as the number of

factors increases. We also look at what DKKM call ridgeless regression,

which can be interpreted as the limit of the ridge regression as α → 0 (it

is OLS when the number of factors is not larger than the number of time

periods). We explored ridge regression to form the estimates β̂′
tft+1 for the

FFC and FMR factors, but it always underperformed OLS, so in the next

section we only report the OLS results for FFC and FMR.

We use the same five characteristics to implement the KPS method. We

begin with the 5×n matrix Ct of rank-standardized characteristics defined

above. Each row of this matrix can be interpreted as a characteristic

factor portfolio. We augment this matrix with a row of constants. Call

the resulting 6 × n matrix C̃t. The returns on the rows of C̃t from t to

t + 1 are f ◦
t+1 := C̃trt+1 where rt+1 denotes the n-vector of excess stock

returns. The IPCA step at date t defines an nf × 6 matrix At, where nf

now denotes the number of KPS factors, and the returns of the KPS factors

are defined to be ft+1 = Atf
◦
t+1. We regress the constant 1 on the factor

returns in rolling 360-month windows to obtain regression coefficients β̂t,

and we set ŷt+1 = β̂tft+1 = β̂tAtf
◦
t+1. The six-factor KPS model does not

employ dimension reduction and is the same as the FMR model run on
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rank-standardized characteristics.3

The DKKM and KPS methodologies are related to the portfolio con-

struction methodology of Brandt, Santa-Clara, and Valkanov (2009), here-

after BSV. BSV de-mean characteristics in each cross-section as DKKM

and KPS do, so they can be used as portfolio weights in a long-short port-

folio, and they consider portfolios as linear combinations of characteristics.

They recommend using the portfolio of this type that maximizes the past

sample mean of a utility function. DKKM generate many additional char-

acteristics as de-meaned sines or cosines of random linear combinations

of the original characteristics, and KPS perform a dimension reduction of

the characteristics (denoted as AtCt above). Following DKKM, we imple-

ment both the DKKM and KPS methodologies by selecting, among the

portfolios that are linear combinations of the augmented or reduced char-

acteristics, the one that maximizes the past sample mean of the quadratic

utility function −(1 − r)2. Here, r denotes the portfolio excess return,

and we note the caveat that DKKM impose L2 penalization in the max-

imization to avoid overfitting. We use this portfolio as an estimate of a

mean-variance frontier portfolio and use it to estimate the SDF.

4 Results

We generate 300 panels, each consisting of 1,000 firms and 720 months.

We run the regressions to estimate β̂t to form ŷt+1 := β̂′
tft+1 in rolling 360

month windows. We compute the square root of the mean of (ŷt+1−zt+1)
2

as an estimate of the unconditional Hansen-Jagannathan distance and the

mean of the conditional Sharpe ratio Et[ŷt+1]/stdevt(ŷt+1) in each panel.

We run the DKKM model with 6, 36, 360, 3600, and 36000 factors, so

the ratio of the number of factors to the number of months in the ridge

regression window is 0.0167, 0.1, 1, 10, and 100.

Figure 4.1 presents the means of these statistics across panels. Perfor-

3In our implementation of the FMR model, we do not rank-standardize the characteristics. Instead, we
scale the FMR portfolios to be 100% long and 100% short.
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mance improves with the number of factors in the DKKM up to 360 factors

and then plateaus. Dimension reduction improves performance in the KPS

model until we reach two factors. The FMR and FFC models generally

underperform the DKKM and KPS models. Statistical significance of dif-

ferences in performance is assessed below. In addition to the statistics

for the factor models, Panel (c) of Figure 4.1 presents the mean across

panels and months of the maximum achievable conditional Sharpe ratio.

The difference between the mean conditional Sharpe ratio and the mean

of the maximum conditional Sharpe ratio is, like the Hansen-Jagannathan

distance, a measure of how far the factor model is from correctly pricing

all assets.

Figure 4.2 presents the distributions of the statistics across panels for

select models. It is interesting that the dispersion of the statistics is less

for the DKKM model than for the FMR model. This is despite the fact

that factor portfolios are randomly constructed in the DKKM model.
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Figure 4.1: 300 panels of data are generated for the BGN economy. Panel (a) shows the
mean (across months and panels) of the conditional Sharpe ratio for various
numbers of factors and various penalization parameters κ. Panel (b) presents
the means across panels of the square root of the within-panel mean of (ŷt+1−
zt+1)

2 for the same models. Ridgeless regression underperforms and is omitted
for reasons of scale. Panels (c) and (d) present the same statistics as Panels
(a) and (b), respectively, for the FFC and FMR models and for the KPS
model with various numbers of factors. Panel (c) also shows the mean across
panels and months of the maximum achievable conditional Sharpe ratio.
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Figure 4.2: 300 panels of data are generated for the BGN economy. Panel (a) shows
the distributions of the within-panel means of the conditional Sharpe ratio
for the DKKM model with 360 factors and κ = 0.05, the KPS model with
two factors, and the FMR model. Panel (b) presents the disributions across
panels of the square root of the within-panel mean of (ŷt+1 − zt+1)

2 for the
same models.

Table 1 presents a comparison of the FMR and FFC models. The FMR

model outperforms on the Sharpe ratio, and the outperformance is sta-

tistically significant. The ranking of the two models is reversed for the

Hansen-Jagannathan distance estimates; however, the difference between

the two models on that dimension is insignificant. Hence, we compare the

DKKM and KPS models to the FMR model in what follows.

Sharpe Ratio HJ Distance

FMR 0.213 0.239
FFC 0.212 0.238
FMR - FFC 0.001 0.001
t-stat 1.779 0.499
p-value 0.076 0.618

Table 1: Performance of FMR and FFC Models. 300 panels of data are generated
for the BGN economy. The mean conditional Sharpe ratio and the square root
of the mean value of (ŷt+1− zt+1)

2 are calculated in each panel for the FMR and
FFC models. The table reports t-statistics for the differences between the FMR
and FMC panel statistics.
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Table 2 reports t statistics for the DKKM model versus the FMR model.

With sufficient penalization, and a sufficient number of factors, DKKM

outperforms FMR and the outperformance is statistically significant. The

t statistics plateau at 360 factors. Table 3 reports t statistics for the KPS

model versus the best-performing DKKM model and the FMR model. The

two-factor KPS model is clearly the best model.

(a) Sharpe Ratio

κ/Factors 6 36 360 3600 36000

0 3.61 -28.80 -117.87 -112.57 -112.54
0.001 3.78 -6.32 -14.26 -15.26 -15.37
0.005 4.07 2.90 1.24 1.02 1.01
0.01 4.12 6.13 5.69 5.61 5.61
0.05 2.77 7.34 8.02 8.08 8.09
0.1 1.34 5.30 6.04 6.11 6.12

(b) Hansen-Jagannathan Distance

κ/Factors 6 36 360 3600 36000

0 -6.89 13.54 38.74 44.47 45.99
0.001 -6.91 3.72 8.12 8.63 8.76
0.005 -6.41 -4.87 -3.19 -3.05 -3.03
0.01 -5.61 -9.01 -8.41 -8.38 -8.36
0.05 -0.87 -5.66 -6.52 -6.63 -6.64
0.1 2.28 -0.99 -1.62 -1.69 -1.70

Table 2: Performance of the DKKM Model. 300 panels of data are generated for
the BGN economy. The mean conditional Sharpe ratio and the square root of
the mean value of (ŷt+1 − zt+1)

2 are calculated in each panel for the DKKM
and FMR models. The table reports t-statistics for the differences between the
DKKM and FMR panel statistics.
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(a) Sharpe Ratio

Factors 1 2 3 4 5 6

vs DKKM -47.18 23.11 13.57 5.49 -0.84 -6.34
vs FMR -39.09 19.26 22.01 19.00 12.63 4.67

(b) Hansen-Jagannathan Distance

Factors 1 2 3 4 5 6

vs DKKM 26.92 -3.42 -2.05 0.34 3.20 5.02
vs FMR 11.46 -12.52 -12.65 -9.60 -4.44 -0.26

Table 3: Performance of the KPS Model. 300 panels of data are generated for the
BGN economy. The mean conditional Sharpe ratio and the square root of the
mean value of (ŷt+1−zt+1)

2 are calculated in each panel for the DKKM, KPS, and
FMR models. The table reports t-statistics for the differences between the panel
statistics of the KPS model compared to the DKKM model with 360 factors and
κ = 0.05 (Panel (a)), and compared to the FMR model (Panel (b)).

5 Conclusion

The dynamics of the BGN economy do not have a simple state-variable

representation, but the model is still a fairly simple economy with only two

macro shocks each period. Despite the simplicity of the environment, the

DKKM “complexity” method outperforms classical factor models. How-

ever, the instrumented principal components method of KPS performs

even better. Subsequent research should explore a hybrid of the methods

and should explore performance in more complex simulated economies.
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